Какое основное предназначение у компрессора авиационного двигателя?

КОМПРЕССОРЫ ГТД

Описание: Требования предъявляемые к компрессорам Компрессор часть ГТД степень аэродинамического и конструктивного совершенства которого в значительной мере определяют мощность экономичность габаритные размеры массу надежность и ресурс двигателя. Работу компрессора характеризуют следующие основные параметры: расход воздуха G кг с определяется количеством воздуха прошедшим через компрессор за одну секунду; степень повышения полного давления в компрессоре отношение давления заторможенного потока воздуха на выходе из компрессора к.

Дата добавления: 2014-07-08

Размер файла: 2.96 MB

Работу скачали: 190 чел.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

4.1. Требования, предъявляемые к компрессорам

Компрессор — часть ГТД, степень аэродинамического и конструктивного совершенства которого в значительной мере определяют мощность, экономичность, габаритные размеры, массу, надежность и ресурс двигателя.

К компрессору предъявляются те же требования, что и к двигателю.

Помимо общих требований предъявляются и некоторые специфические:

— обеспечение заданного секундного расхода воздуха;

— обеспечение заданной степени повышения давления;

— обеспечение устойчивой, т.е. без помпажа и пульсации, работы в широком диапазоне частоты вращения ротора.

Работу компрессора характеризуют следующие основные параметры:

— расход воздуха G ( кг / с ) — определяется количеством воздуха, прошедшим через компрессор за одну секунду;

— степень повышения полного давления в компрессоре — отношение давления заторможенного потока воздуха на выходе из компрессора к давлению заторможенного потока на входе в компрессор ;

— адиабатический КПД — определяется как отношение полезной адиабатической работы, затраченной на сжатие и проталкивание воздуха в компрессоре, к полной подведенной к компрессору работе .

Адиабатический КПД на расчетном режиме для отдельных ступеней осевых компрессоров составляет 0,89. 0,92, многоступенчатых компрессоров 0,85. 0,87.

4.2. Типы компрессоров

4.2.1. Осевые компрессоры

Осевой компрессор состоит из (рис. 4.1) входного направляющего аппарата (BHA) 5, нескольких венцов последовательно чередующихся в oceвом направлении рабочих лопаток 2, установленных на вращающемся роторе 7, нескольких венцов направляющих лопаток 3, закрепленных в корпусе компрессора 4 и спрямляющего аппарата 6, расположенного за компрессором. Совокупность одного венца рабочих лопаток и следующего за ним венца направляющих лопаток называется ступенью компрессора.

Рис. 4.1 Схема ступени и изменение параметров состояния воздуха в ступени осевого компрессора

Рабочие лопатки одной ступени, установленные в диске, называют рабочим колесом (PK), направляющие лопатки одной ступени, закрепленные в корпусе, называют направляющим аппаратом (НА), последний направляющий аппарат за последним PK называется спрямляющим аппаратом (CA).

В осевом компрессоре направление движения воздуха в основном осевое. В каналах, образованных рабочими лопатками, к воздуху подводится механическая энергия от турбины, в результате чего давление и скорость воздуха увеличиваются. В расположенном за рабочими лопатками НА кинетическая энергия воздуха преобразуется в потенциальную, т.е. за счет снижения скорости потока воздуха повышается его давление. НА обеспечивает также определенное направление потока при вхождении его в следующую ступень.

Степень повышения давления в ступени oceвого компрессора в основном зависит от средней окружной скорости лопаток. Чем больше эта скорость, тем больше степень повышения давления. Максимальная окружная скорость лопаток из условий их прочности обычно не превышает 300. 450 м / с .

Диаметр ступени компрессора определяется потребным расходом воздуха, его плотностью и осевой скоростью. Осевая скорость воздуха сохраняется по всем ступеням постоянной или несколько уменьшается к последним ступеням. Поскольку плотность воздуха на входе в первую ступень минимальная, то наибольшую площадь проточной части имеет первая ступень, далее площадь уменьшается к последним ступеням. Площадь проточной части ограничена ее наружным и внутренним диаметрами.

Для уменьшения наружного диаметра первой ступени при заданной площади проточной части уменьшают внутренний диаметр, а чтобы обеспечить размещение лопаток на роторе, внутренний диаметр выбирают обычно равным 0,35. 0,4 от наружного диаметра.

На последующих ступенях может быть сохранен тот же наружный диаметр, что и на первой ступени (рис. 4.2, а), тот же внутренний диаметр (см. рис. 4.2, б), тот же средний диаметр (см. рис. 4.2, в), или диаметры могут меняться (см. рис. 4.2, г).

Рис. 4.2. Схемы профилей проточной части:

а — с постоянным наружным диаметром; б — с постоянным внутренним диаметром;

в — с постоянным средним диаметром; г — с переменным наружным, внутренним и средним диаметрами

В первом случае потребное уменьшение площади проточной части (вследствие возрастания плотности воздуха) достигается увеличением внутреннего диаметра проточной части. При этом средние окружные скорости ступеней растут и, следовательно, увеличиваются их степени повышения давления. Но наряду с этим преимуществом указанная конструкция компрессора обладает и недостатком — меньшая длина лопаток последних ступеней. Зазор между торцом лопатки и корпусом при наличии коротких лопаток относительно больше, чем при длинных. В результате этого у компрессора с короткими лопатками увеличивается обратное перетекание воздуха в зазоре и, следовательно, уменьшается степень повышения давления компрессора.

При постоянном внутреннем или среднем диаметре лопатки последних ступеней более длинные, поэтому и перетекания меньше. Степень повышения давления ступеней остается постоянной (при постоянном среднем диаметре) или уменьшается (при постоянном внутреннем диаметре), поскольку зависит от средней окружной скорости.

В целях расширения области устойчивой работы и повышения КПД применяются двухкаскадные и трехкаскадные схемы осевых компрессоров. В многокаскадном компрессоре несколько последовательно расположенных роторов автономно приводящихся во вращение отдельными турбинами.

4.2.2. Центробежные компрессоры

В центробежном компрессоре для повышения давления газа используется центробежный эффект, который позволяет увеличить степень повышения полного давления намного больше, чем в осевом компрессоре. К числу достоинств центробежных компрессоров относятся также относительная простота конструкции (существенно меньшее число деталей), более благоприятная характеристика и меньшая чувствительность к условиям эксплуатации, чем у осевых.

Ступень центробежного компрессора состоит из BHA 1, PK 2 и выходной системы, которая включает в себя безлопаточный щелевой диффузор 3, лопаточный диффузор 4 и выходной патрубок 5 (рис. 4.3).

Рис. 4.3. Двухступенчатый центробежный компрессор:

1 — BHA; 2 — PK; 3 — безлопаточный щелевой диффузор; 4 — лопаточный диффузор; 5 — выходной патрубок

В PK механическая энергия, подводимая к колесу от турбины, преобразуется в потенциальную и кинетическую энергию газа. Это преобразование энергии в PK осуществляется в результате аэродинамического взаимодействия потока газа с вращающимся лопаточным аппаратом. Поток на входе обычно закручивается по вращению. Хотя в связи с этим уменьшается напор, сообщаемый воздуху, необходимость в предварительной закрутке по вращению связана с желанием уменьшить величину относительной скорости, которая в периферийном сечении достигает значений, близких к скорости звука и даже превышающих ее.

По конструктивному выполнению рабочие колеса делятся на следующие типы:

Многоступенчатый осевой компрессор авиационного двигателя

Многоступенчатый осевой компрессор авиационного двигателя содержит две или более последовательно установленные ступени. Компрессор также снабжен средством для отключения части ступеней, выполненным в виде средства для отключения одной или более последних ступеней. Изобретение улучшает регулирование компрессора. 5 ил.

Изобретение относится к области авиационного двигателестроения. Может быть использовано в многорежимных сверхзвуковых и в дозвуковых газотурбинных авиационных двигателях.

Известен дозвуковой авиационный двигатель с большой степенью двухконтурности двухвальный ПС-90А [1]. В двигателе установлен вентилятор, приводимый турбиной низкого давления. Компрессор высокого давления состоит из 13 последовательных осевых ступеней, при этом входной направляющий аппарат и направляющие аппараты первой, второй и третьей ступеней выполнены регулируемыми. Осуществляется перепуск воздуха из промежуточных ступеней компрессора высокого давления. Недостатком данного двухкаскадного компрессора является сложность конструкции и ненадежность в работе. Невозможен быстрый и надежный переход с режима пониженной тяги на режим максимальной тяги.

Читать еще:  Как подключить 2 аккумулятора в машину?

Известен многоступенчатый осевой компрессор по патентному документу SU 1677375. При работе этого компрессора для обеспечения его беспомпажной работы в условиях повышения сопротивления сети за компрессором часть воздуха из-за последней ступени подается на вход промежуточных ступеней по каналу перепуска через регулируемый клапан, являющийся дроссельным устройством. Недостатком этого компрессора является неизбежное уменьшение расхода воздуха через компрессор при увеличении сопротивления сети за компрессором и невозможность быстро изменить степень сжатия компрессора.

Известен многоступенчатый осевой компрессор по патентному документу US 4038818. Указанный компрессор снабжен средством для отключения части ступеней, а именно двух передних ступеней. Это дает возможность при повышении температуры поступающего в компрессор воздуха, не меняя оборотов ротора, сделать работу неотключенных ступеней более расчетной. Но данная конструкция не позволяет восстановить или увеличить расход воздуха через компрессор при увеличении сопротивления сети за компрессором.

Заявляемое изобретение представляет собой новое средство механизации компрессора. Предлагается снабдить многоступенчатый осевой компрессор средством для отключения части ступеней, причем средством для отключения одной или более последних ступеней. В сверхзвуковых двигателях целесообразна замена двухвальной схемы двигателя одновальной одноконтурной. В дозвуковых двухвальных двухконтурных двигателях предлагается применять отключение последних ступеней в последнем каскаде компрессора. Отключение и подключение последних ступеней в компрессоре сверхзвуковых двигателей позволяет отказаться от других средств механизации компрессора: двухкаскадного компрессора и регулируемых направляющих аппаратов статора. Поддерживая приведенное число оборотов ротора равным расчетному значению, есть возможность практически мгновенно менять степень сжатия компрессора путем отключения или подключения последних ступеней. Это позволит быстро менять температуру газов перед турбиной и тягу двигателя без изменения оборотов ротора, регулируя степень расширения газов в турбине. Условия работы оставшихся работать ступеней компрессора будут расчетными или близкими к расчетным. Подключение ранее отключенных последних ступеней в последнем каскаде дозвукового двухконтурного двигателя позволяет практически мгновенно увеличить расход воздуха через внутренний контур и дает возможность поднять температуру газов перед турбиной, регулируя подачу топлива. При этом увеличивается тяга двигателя без опасности появления помпажа компрессора.

Для отключения ступеней предлагается использовать устройства перепуска воздуха в последних ступенях. При этом скорость выхода воздуха из рабочего колеса отключаемой ступени возрастает настолько, что рабочая нагрузка с рабочего колеса снимается. Вместо перепуска воздуха возможно использование различных сцепных муфт приводов. При помощи сцепной муфты рабочее колесо соединяется с ротором двигателя в режиме включения и разъединяется с ротором в режиме отключения ступени. При этом воздушный поток проходит через рабочее колесо, которое не оказывает на него силового воздействия.

На фиг. 1 изображена схема трех последних ступеней каскада компрессора с отключением двух последних ступеней с помощью устройства перепуска воздуха; на фиг. 2 изображена схема варианта отключения трех последних ступеней каскада компрессора; на фиг. 3 изображен треугольник скоростей ступени компрессора с осевым входом в режиме отключения; на фиг. 4 изображен треугольник скоростей ступени компрессора с предварительной закруткой потока по вращению колеса в режиме отключения.

Однокаскадный осевой компрессор одноконтурного сверхзвукового реактивного двигателя содержит двенадцать последовательных ступеней. Схема последней части компрессора изображена на фиг. 1. На роторе 1 компрессора закреплены рабочие лопатки 2. Каждый ряд лопаток 3, закрепленный на статоре компрессора, может быть заменен двумя последовательными рядами неподвижных лопаток с целью уменьшения сопротивления течению воздушного потока в режиме отключения данной ступени. Две последние ступени компрессора снабжены устройствами перепуска воздуха 4 и 5. Кольцевая полость 6 вокруг отключаемых ступеней предназначена для обеспечения свободного движения воздуха в режиме отключения. Направляющий аппарат 7 на входе в полость 6 может быть использован для возможной закрутки потока. Кольцевая полость 6 соединена вместе с выходом компрессора со входом в камеру сгорания 8 двигателя. Размер, количество и конкретное расположение окон перепуска 4 и 5 определяется исходя из условия обеспечения наилучшего отключения ступеней. Перепуск возможно осуществить с помощью гибкой стальной ленты, закрывающей отверстия в корпусе компрессора в сечении, где необходим перепуск. Также перепуск возможно осуществить с помощью клапанов перепуска воздуха. Окна перепуска в этих клапанах закрываются заслонками, управляемыми гидроцилиндрами. Устройства перепуска воздуха 4 и 5 являются средством для отключения двух последних ступеней в компрессоре. Компрессор соединен валом с турбиной. Двигатель имеет регулируемое сопло, оборудован системой автоматического управления.

С целью упрощения запуска раскрутку ротора 1 двигателя целесообразно начинать с отключенными последними ступенями. После предварительной раскрутки ротора 1 стартером следует закрыть окна перепуска 4 и 5 и одновременно подать — воспламенить топливо в камере сгорания двигателя. Обороты двигателя быстро достигнут расчетного значения. Система автоматического управления поддерживает режим постоянства приведенных оборотов двигателя nпр= const, регулируя, например, подачу топлива в камеру сгорания по сигналу центробежного регулятора и сигнала от датчика температуры воздуха, поступающего на вход компрессора. В зависимости от того, какая требуется тяга двигателя в данный момент времени, осуществляется регулировка температуры газов перед турбиной Tг * путем регулировки степени расширения газов в турбине Пт * при помощи регулируемого сопла. При этом предлагается регулировать степень сжатия компрессора Пк * путем закрытия или открытия окон перепуска 4 и 5 ступеней. Таким образом, чтобы увеличение или уменьшение степени сжатия в раз соответствовало увеличению или уменьшению соответственно Тг * в k раз. В этом случае режим работы работающих ступеней и расход воздуха через компрессор будет поддерживаться расчетным или близким к нему. Например, увеличению Тг * с 1069 до 1400K должно соответствовать увеличение степени сжатия компрессора раза. Для этого достаточно подключить одну ступень (фиг.5). Подключение еще одной ступени к работе соответственно позволит дополнительно увеличить Тг * без уменьшения расхода воздуха через компрессор. Закрытие окон перепуска 4 и 5 соотвествует подключению этих ступеней к работе, а открытие — к отключению. Сверхзвуковой двигатель с регулируемым соплом, у которого несколько последних ступеней в осевом компрессоре выполнены отключаемыми, имеет не один, а несколько расчетных режимов — в зависимости от того, сколько ступеней компрессора подключено к работе. Вследствие этого есть возможность отказаться от других средств механизации компрессора. Увеличение тяги двигателя происходит быстро на любой возможной высоте полета. Для запуска двигателя в полете с режима авторотации следует одновременно закрыть окна перепуска 4 и 5 и начать подачу топлива с воспламенением. Кроме указанного выше варианта регулировки двигателя возможно применение специальных команд, регулирующих подачу топлива при отключении и подключении ступеней компрессора.

На фиг. 2 изображена схема варианта отключения последних ступеней в компрессоре, при котором кольцевая полость 6 непосредственно не соединена со входом в камеру сгорания двигателя. Окна перепуска 5 открыты при отключении последней ступени, окна перепуска 4 и 5 отрыты при отключении двух последних ступеней, окна 4, 5 и 9 — при отключении трех последних ступеней.

Отключение и подключение ступеней компрессора может быть применено в качестве эффективного средства против помпажа компрессора в дозвуковых многовальных газотурбинных двигателях двухконтурных и турбовинтовых в последнем каскаде компрессора при быстром восстановлении тяги двигателя. Подключение ступеней дает возможность неограниченно быстро увеличить расход топлива, расход воздуха через внутренний контур и тягу двигателя. Увеличивается скорость восстановления оборотов роторов от пониженных до номинальных.

Свободное течение воздуха в каналах рабочего колеса отключенной ступени будет соответствовать фиг. 3 или 4. Для того, чтобы снять рабочую нагрузку с рабочего колеса отключаемой ступени, необходимо выполнить условие C1u = C2u, то есть окружные составляющие абсолютной скорости на входе в рабочее колесо и на выходе из него должны стать равны. В случае осевого входа воздушного потока в рабочее колесо (фиг. 3) осевым должен быть и выход. Для этого, в результате открытия окон перепуска воздух в межлопаточных каналах рабочего колеса должен не сжиматься, как это имеет место при рабочем режиме работы ступени, а расширяться и ускоряться под действием градиента статического давления при сужении канала течения от F1 на входе до F2 на выходе из рабочего колеса. Если абсолютная скорость C2 достигнет величины C2= tg2u, выход воздуха из рабочего колеса станет осевым, значит крутящий момент на данном рабочем колесе станет равен практически нулю. U = скорость окружная рабочего колеса; индексы 1 и 2 обозначают значения параметров на входе и выходе из рабочего колеса соответственно; 2 — угол между относительной скоростью на выходе W2 и фронтом рабочего колеса. Эти обозначения относятся также к схеме на фиг. 4. Но в этом случае воздушный поток имеет предварительную закрутку перед рабочим колесом в сторону вращения рабочего колеса. В результате открытия окон перепуска воздуха при данном угле 2 должно выполниться условие C1u= C2u. Следует учитывать при расчете компрессора, что скорость потока при сужении канала течения не может стать выше критической. Обтекание лопаток рабочего колеса и лопаток направляющего аппарата отключенной ступени будет проходить без заметного гидравлического сопротивления. На рабочем колесе отключенных ступеней останется незначительная нагрузка, связанная с необходимостью поддерживать циркуляцию воздуха.

Читать еще:  Как выправить вмятину на машине своими руками?

В том случае, если для отключения ступеней вместо перепуска воздуха применяются сцепные муфты приводов, происходит уменьшение частоты вращения рабочего колеса отключенной ступени независимо от частоты вращения ротора 1 до величины, при которой C1u станет равной C2u. В качестве сцепных муфт приводов могут быть использованы различные управляемые муфты: фрикционные, кулачковые, гидравлические. Управление муфтами может быть гидравлическим, пневматическим, электромагнитным.

Из приведенного описания совершенно очевидно, что возможны многие модификации и варианты настоящего изобретения. Число ступеней в компрессоре, число отключаемых ступеней, режимы регулирования, расчетные режимы двигателей могут быть различными. Конструкция компрессора позволяет отказаться от сложных автоматов приемистости, гидрозамедлителей и ограничителей нарастания давления топлива перед форсунками. Появляется возможность поднять температуру газов перед турбиной до максимального значения при сниженной температуре воздуха на входе в компрессор.

Источники информации 1) Пивоваров В.А. Авиационный двигатель ПС-90А, Москва, 1989 год.

Многоступенчатый осевой компрессор авиационного двигателя, содержащий две или более установленные последовательно ступени, причем компрессор снабжен средством для отключения части ступеней, отличающийся тем, что средство для отключения части ступеней выполнено в виде средства для отключения одной или более последних ступеней.

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 09.10.2009

Газотурбинный двигатель. Фото. Строение. Характеристики.

Авиационные газотурбинные двигатели.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после — в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Читать еще:  Что называется порядком работы цилиндров двигателя?

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Какое основное предназначение у компрессора авиационного двигателя?

ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ

Рассмотрим устройство центробежного компрессора (рис. 13, 14). В литом корпусе на специальных подшипниках вращается колесо. Перед колесом укреплены неподвижные направляющие аппараты, которые создают предварительную накрутку потока воздуха перед входом в колесо — отклоняют поток воздуха от осевого направления движения, при этом уменьшается скорость воздуха относительно колеса. Назна­чение закрутки воздуха -увеличить быстроходность колеса (повысить число оборотов).

Рис. 13. Принципиальное устройство центробежного компрессора

Колесо состоит из крыльчатки и заборных лопаток.

Крыльчатка представляет собой диск, имеющий лопатки (идущие по радиусу) с одной или обеих сторон диска.

Если лопатки имеются на одной стороне, то такое колесо называется колесом с односторонним входом воздуха. Если лопатки имеются с. обеих сторон колеса, то оно назы­вается колесом с двухсторонним входом воздуха.

Чаще всего колесо делают с двухсторонним входом воздуха для увеличения количества воздуха, прогоняемого компрессором в одну секунду,

К крыльчатке наглухо крепятся заборные стальные ло­патки, загнутые в сторону вращения колеса, для обеспечения безударного входа воздуха в колесо.

Воздух из колеса попадает в диффузор, а из него через коленообразные патрубки поступает в камеры сгорания.

Рис. 14. Детали колеса компрессора

Главная рабочая часть центробежного компрессора — ко­лесо. Оно получает энергию от газовой турбины и передает ее воздуху. За счет этой энергии повышается давление воз­духа о колесе и увеличивается абсолютная скорость его дви­жения.

Часть энергии, передаваемая колесом воздуху, тратится на преодоление гидравлических сопротивлений, возникаю­щих при движении воздуха.

Рассмотрим подробнее движение воздуха по колесу. Поток воздуха закручивается неподвижным направляю­щим аппаратом и подходит к колесу со скоростью с 1 (рис. 15). Треугольник скоростей на входе в колесо составляют:

с 1 абсолютная скорость входа воздуха на лопатки;

и — окружная скорость вращения лопатки (знак минус показывает, что вращение колеса происходит навстречу дви­жения частиц воздуха);

w 1 скорость движения частиц воздуха относительна лопатки.

Колесо вращается с очень большими оборотами: 10000—15000 в минуту (160—250 оборотов в секунду). Окружная скорость на ободе колеса достигает 450— 500 м/сек и более.

Лопатки колеса, захватив частицы воздуха, увлекают их и заставляют вращаться с такой же большой скоростью.

Обозначим через т массу частички воздуха и через r радиус, где находится эта частичка.

Величина радиуса будет все время увеличиваться при движении частички от входа в колесо до выхода из него.

Центробежная сила, отбрасывающая частичку воздуха к краю колеса, определяется по известному из физики уравнению:

Значит, чем дальше будет частица воздуха удаляться от оси вращения колеса, тем больше будет ее окружная скорость и, следовательно, больше будет центробежная сила, дей­ствующая на частицу воздуха и сжимающая ее. Масса же воздуха состоит из бесчисленного количества этих элемен­тарных частиц.

Рис. 15. Треугольники скоростей воздуха на входе и выходе колеса

Таким образом, воздух, прогоняемый колесом, сжимается, кроме того, увеличивается абсолютная скорость его дви­жений.

Треугольник скоростей на выходе из колеса будет состав­лен скоростями:

с к абсолютная окружная скорость воздуха на выходе из колеса;

u k — окружная скорость лопатки на краю колеса;

w k — относительная скорость выхода воздуха из колеса.

Вектор относительной скорости отклонен против враще­ния колеса, так как воздух отстает от вращающегося колеса. Величина отставания воздушного потока на выходе из колеса зависит главным образом от числа и длины лопаток колеса . Чем больше лопаток, тем труднее частице воздуха отклониться от радиального направления. Но чем больше лопаток, тем меньше канал для прохода воздуха и тем труд­нее воздуху проходить по этому каналу.

На выходе из колеса воздух имеет давление 2,2 — 2,5 кг/см и абсолютную скорость порядка 450 — 550 м/сек, полученные за счет энергии, сообщенной воздуху колесом. С такими параметрами воздух поступает в диффузор. Диффузор пред­ставляет расширяющийся канал, в котором происходит уменьшение скорости потока воздуха. Он служит для преоб­разования скоростной энергии в потенциальную, т. е. в энер­гию давления воздуха.

Рис. 16. Лопаточный диффузор

Диффузоры делятся на два типа: щелевые и лопаточные. Конструктивно они выполняются вместе (рис. 16, 17).

Щелевой диффузор представляет собой кольцевую щель между колесом и лопаточным диффузором; вели­чина щели колеблется (в различных ТРД) в пределах 12 — 30 мм.

В щелевом диффузоре происходит некоторое выравнива­ние скоростей воздушного потока, (что улучшает устойчивость работы компрессора) и понижение скорости движения воз­духа.

Рис. 17. Схема щелевого и лопаточного диффузоров

Лопаточный диффузор .представляет решетку из лопаток, расположенных по окружности.

Между лопатками образуются расширяющиеся каналы.

Установка лопаток сокращает путь частиц воздуха, что уменьшает потери на трение. При движении воздуха по рас­ширяющемуся каналу лопаточного диффузора уменьшается скорость и повышается давление воздуха (так же как в спрямляющем аппарате осевого компрессора).

Параметры воздуха (с, р, Т) в элементах центробежного компрессора изменяются следующим образом (рис. 18). В неподвижном направляющем аппарате скорость воздуха увеличивается, давление и температура падают — участок а — 1.

В колесе за счет затраты энергии происходят сжатие воздуха и увеличение скорости его движения; температура воз­духа повышается как за счет сжатия, так и за счет тепла тре­ния (сечение вв).

Наконец в диффузоре и коленообразных патрубках за счет уменьшения скорости потока воздуха его давление и тем­пература увеличиваются (сечение 2 — 2).

Рис. 18. Изменение параметров воздуха в элементах центробежного компрессора

Примерные величины давления, температуры и скорости воздушного потока и элементах центробежного компрессора показаны на рис. 18.

Ссылка на основную публикацию
Adblock
detector