Что называется степенью сжатия двигателя?

Степень сжатия двигателя — что это такое

Отношение полного объема цилиндра к объему камеры сгорания называется
степенью сжатия — Е.

(Степень сжатия двигателя Lada Niva 4×4 — 9.3. (см. здесь) )

Всё коротко и ясно. Но вот достаточно ли? Конструкция силовой установки — это только способ или система, которая тепловую энергию сгоревшего топлива превращает в механическую энергию вращающихся частей двигателя. Понятия «сжатие”, «расширение», «рабочее тело» обязывают ещё рассматривать физико-химические процессы, происходящие в цилиндрах двигателя. А эти процессы невозможны без температуры, которая, в свою очередь, задаётся степенью сжатия. Эффективность использования расширяющихся газов зависит от степени расширения. И вот, при рассмотрении этих процессов в самом общем виде можно и нужно кое-что уяснить. Всё по порядку.

Степень сжатия является одной из характеристик двигателя. Она показывает, во сколько раз уменьшается объем рабочей смеси или воздуха при перемещении поршня из НМТ в ВМТ. По этой характеристике можно определить вид топлива, применяемый в двигателе; устаревшая модель двигателя или совершенная; это дизельный двигатель с раздельными камерами сгорания или дизельный двигатель с непосредственным впрыском.

Повышение степени сжатия позволяет увеличить мощность двигателя и улучшить его экономичность. Возможность увеличения степени сжатия определяется главным образом свойствами топлив, токсичностью отработанных газов и нагрузкой на детали двигателя; для бензиновых автомобильных двигателей Е= 6,5 -14, а для дизеля Е = 15-24.

В дизельных двигателях с увеличением степени сжатия Е повышаются температура и давление воздуха в момент начала впрыска. В результате этого задержки воспламенения уменьшаются, снижается скорость нарастания давления, и работа двигателя становится более мягкой. Однако при больших Е (вследствие более высоких давлений в цилиндре) необходимо увеличивать массу деталей кривошипно-шатунного механизма для повышения прочности. Это приводит к возрастанию механических потерь. Нужно помнить о том, что в результате сгорания топливовоздушной смеси объём цилиндра заполняется смесью азота, углекислого газа и водяных паров, и что при высокой температуре (свыше 2000°С) в камере сгорания происходит диссоциация воды на водород и кислород, а углекислого газа — на окись углерода и кислород. На это затрачивается значительное количество теплоты — рост температуры рабочего тела тормозится.

Увеличение степени сжатия в бензиновых двигателях ограничено в связи с возможностью возникновения детонации. Детонационное сгорание, продолжающееся некоторое время, может привести к повреждению двигателя.

Степень сжатия — характеристика двигателя, заданная конструктором. Проверять её нет необходимости, и только при ремонте двигателя нужно строго выполнять технические условия сборки конкретного двигателя.

Является ли степень сжатия величиной постоянной? Или степень сжатия — величина переменная?

Если допустить, что степень сжатия — величина постоянная, то мы получим две другие постоянные величины — температуру и давление. Но такого произойти не может. Нельзя рассматривать работу двигателя, принимая во внимание только его конструкцию.

Для того чтобы появились температура и давление, нужно что-то сжимать (степень сжатия). Это что-то -воздух или топливовоздушная смесь (рабочее тело).

Нагрузка двигателя регулируется путём дросселирования воздуха, что является непременным условием сохранения примерно постоянного состава топливовоздушной смеси в бензиновом двигателе. В дизельном двигателе нагрузка регулируется изменением количества топлива, подаваемого в камеру сгорания.

Другими словами, мы управляем мощностью двигателя путём изменения количества рабочего тела в его цилиндрах.

На современных автомобилях применяются электронные системы управления, способные быстро и точно рассчитать состав и количество рабочего тела, своевременно и в нужном количестве подать его в цилиндры двигателя с учётом многих факторов, влияющих на работу силовой установки в целом.

Вспомним некоторые режимы работы двигателя — холостой ход, частичная нагрузка и максимальная нагрузка. Для каждого из этих режимов работы двигателя необходимо определённое количество рабочего тела в соответствии с положением педали подачи топлива.

Для режима холостого хода необходимо минимальное количество рабочего тела, для режима максимальной нагрузки — максимальное.

Если заполнить максимальным количеством рабочего тела объём между поршнем, находящимся в НМТ, и головкой блока (максимальная нагрузка), а затем переместить поршень в ВМТ, то рабочее тело сожмётся до какой-то плотности. После проведённых расчётов мы получим реальную степень сжатия рабочего тела. Эта реальная степень сжатия не может быть выше (для атмосферных двигателей) степени сжатия, предусмотренной при конструировании конкретного двигателя.

Это обусловлено рядом факторов, влияющих на количество свежего заряда, поступившего в цилиндр двигателя, — гидравлического сопротивления впускной системы, наличие в цилиндре остаточных газов, подогревом заряда от стенок впускной системы и пр.

Если частично заполнить рабочим телом тот же объём между поршнем, находящимся в НМТ, и головкой блока (холостой ход), а затем переместить поршень в ВМТ, то рабочее тело сожмётся до меньшей плотности. После проведённых расчётов мы получим реальную степень сжатия рабочего тела для режима холостого хода. Проводя подобные расчёты для каждого положения педали подачи топлива, мы можем рассчитать реальную степень сжатия в цилиндрах в каждый из моментов работы двигателя.

Верхний предел степени сжатия ограничен конструктивными особенностями двигателя (прочностью), свойствами топлива и т.д.

Нижний предел степени сжатия ограничен способностью топлива к воспламенению. На изменение реальной степени сжатия, в основном, влияет «насосная» характеристика цилиндров (исправная цилиндропоршневая группа -больше рабочего тела, неисправная — меньше).

Реальную степень сжатия рассчитывать не надо. Достаточно иметь возможность проверить компрессию в цилиндрах двигателя, сравнить результаты измерения с техническими данными производителя конкретного двигателя. Также необходимо проверить герметичность (производитель указывает допустимые нормы потерь — некоторые называют это проверкой на «утечки») камеры сгорания цилиндра. Если полученные данные соответствуют характеристикам, указанным производителем этого двигателя, то с реальной степенью сжатия все в порядке.

Чем выше давление (компрессия) в цилиндрах двигателя и лучше герметичность камеры сгорания -тем выше реальная степень сжатия, температура рабочего тела, и тем лучше условия для воспламенения топлива.

Любая электронная система управления двигателем учитывает изменение реальной степени сжатия и реагирует на её изменение путём своевременной коррекции состава топливовоздушной смеси и изменением времени подвода тепла.

Для двигателей с различными системами наддува количество рабочего тела в его цилиндрах будет большим, и реальная степень сжатия, соответственно, выше. Большими являются при этом температурные и механические нагрузки. Двигатели с системами наддува отличаются от атмосферных двигателей большей мощностью и конструктивно.

На рисунке 1 (а) показано поле реальных степеней сжатия, полученное путём измерения давлений конца сжатия в бензиновом двигателе с геометрической степенью сжатия Е = 8,5. Верхняя граничная кривая показывает реальную степень сжатия при полностью открытой дроссельной заслонке в зависимости от частоты вращения двигателя п. Ниже этой кривой показано всё поле реальных степеней сжатия при различных открытиях дроссельной заслонки.

На рисунке 1(6) показано поле реальных степеней сжатия двигателя с геометрической степенью сжатия Е = 12,5

Реальная степень сжатия зависит от технического состояния цилиндров двигателя, а также устройств, призванных изменять в этих цилиндрах количество рабочего тела (различные системы наддува).

С геометрической степенью сжатия всё понятно. С реальной степенью сжатия, я надеюсь, тоже всё будет в порядке. Во всяком случае, я старался.

На этом можно было бы и заканчивать, но есть ещё кое-что. На это «кое-что» мы иногда не обращаем внимание. Точнее, мы знаем об особенностях газообмена, но забываем о них, когда речь идёт об определении «степень сжатия».

Рис. 2. Индикаторная диаграмма четырёхтактного дизельного двигателя без наддува в координатах Р — V: а) — цикл; б) — процесс газообмена

Если внимательно посмотреть на индикаторную диаграмму (рис. 2) четырёхтактного дизельного двигателя без наддува (да и бензинового тоже), то мы увидим, что при впуске впускной клапан закрывается после того, как поршень уже начал движение от НМТ к ВМТ и даже прошёл какое-то расстояние (точка 2). То есть процесс сжатия начался несколько позже. Нечто подобное происходит и в такте расширения — выпускной клапан открывается раньше, чем поршень дошел до НМТ (точка 4).

Читать еще:  Как пользоваться котлом подогрева двигателя?

То есть фактически степени сжатия и расширения отличаются от заданных по характеристике параметров (отношение объёмов двух геометрических фигур). И у нас есть основание назвать такие степени сжатия и расширения фактическими. А степени сжатия и расширения, соответствующие характеристике рассматриваемого двигателя — геометрическими.

Поршневой двигатель с простым кривошипношатунным механизмом имеет равные между собой геометрические степень сжатия и степень расширения.

На протяжении длительного времени (практически с момента появления двигателя внутреннего сгорания) создатели двигателей стремились максимально использовать давление расширяющихся газов. С этой целью создавались сложные системы кривошипов, способные повысить степень расширения. Но такие двигатели имели низкий механический КПД и были неработоспособны при высоких частотах вращения.

Различных степеней сжатия и расширения можно частично добиться регулированием моментов открытия и закрытия клапанов.

Для диагностов очень важно, на мой взгляд, понимание того, что сказано выше. Проблема диагностирования и ремонта двигателей с изменяемыми фазами газораспределения не рассматривалась нами на Слётах диагностов. Это говорит о том, что существующую проблему пока ещё не решали. А может быть это только моя проблема?

Мне кажется, в самый раз сейчас вспомнить пятитактный цикл Аткинсона/Мил-лера. Представьте себе двигатель, у которого геометрическая степень сжатия — 13 (для двигателя ОТТО это достаточно высокая степень сжатия), объём — 1.51, впускной клапан которого закрывается не 36 градусов после НМТ по углу поворота коленчатого вала, а 81 градус. Естественно, часть рабочего тела будет вытеснена во впускной коллектор. Вот вам и пятый цикл — вытеснение. Если допустить, что вытеснено 20% рабочего тела, то фактическая степень сжатия этого двигателя будет 10,6. Рабочий объём такого двигателя, если брать во внимание только фактическую степень сжатия, будет близок к двигателю объёмом 1.21. А фактическая степень расширения будет соответствовать нашему двигателю объёмом 1.51. Расход топлива, экологические показатели, мощность, крутящий момент. Интересно? Мне тоже интересно. Но это не тема сегодняшнего разговора.

Я взял этот пример из Интернета и не ручаюсь за точность всех данных, но он наглядно показывает суть цикла.

По циклу Аткинсона/Миллера на сегодняшний день работают двигатели TOYOTA Prius, 1,51 1NZ-FXE, 2,26l FORD Escap Hibrid.

Таким образом, необходимо различать:

А. Степень сжатия как одна из технических характеристик двигателя (геометрическая), она неизменна.

B. Степень сжатия фактическая — также является технической характеристикой двигателя, характеризуется фазами газораспределения, она неизменна.

В двигателях с регулируемыми фазами газораспределения степени сжатия и расширения также являются характеристикой двигателя, и их следует считать фактическими.

C. Степень сжатия реальная, меняющаяся в зависимости от:

— количества поступившего в цилиндры двигателя рабочего тела;

— частоты вращения коленчатого вала;

— технического состояния цилиндропоршневой группы двигателя и т.д.

Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Читать еще:  Как правильно сливать масло с двигателя?

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а — поршень, b — шатун, с — траверса, d — коленвал, е — электродвигатель, f — промежуточный вал, g — тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Зрим в корень: сказки про компрессию двигателя

Компрессия – это вульгаризм. Правильно – давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива – для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

Компрессия и степень сжатия – одно и то же: сказка первая

Нет, не так! Компрессия – это давление в цилиндре, степень сжатия – безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия – это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия – это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии – нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

«Компрессия» – то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

1 no copyright

Поднял компрессию – увеличил мощность: сказка вторая

Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.

Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором – на 9%. Здорово!

А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, – на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2-3%, причем в зоне малых и средних оборотов. А на высоких – никакого эффекта.

Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик – и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, – стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.

Способ второй – уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.

Сделали. Для нового мотора – всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами – 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

Компрессия резко выросла, а мощность – нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

2 no copyright

Нет компрессии – сразу на капиталку: сказка третья

Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?

Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это – тема отдельной статьи.

Чем выше компрессия, тем лучше: сказка четвертая

Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя – базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

Читать еще:  Что такое ГТД на машину?

3 no copyright

И совсем не сказка.

Так на что же влияет компрессия? На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.

В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.

Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.

Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.

Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой – наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» – дело в целом бесперспективное.

Разложим по полочкам — Компрессия, Степень сжатия, Давление конца такта сжатия

Судя по комментариям, от которых у меня поначалу прилично бомбануло, у людей в голове полный технический хаос. И, несмотря на то, что абсолютное большинство из них это устраивает, я все-таки продолжу писать для тех немногих, кто все же чему-то хочет научиться.

Итак. Начнем, пожалуй, с простейших базовых вещей, таких как компрессия, степень сжатия и давление в ВМТ.

Эти три понятия люди почему то постоянно путают и часто я вижу ситуацию когда мужики сравнивают показания своего компрессометра, снятые на холодном моторе с подсаженным АКБ и закрытой дроссельной с графой «степень сжатия» в мануале к своей машине. И, представьте себе, даже умудряются сделать какие то далеко идущие выводы.

Компрессия — максимально достигаемое давление в цилиндре. Измеряется на прогретом двигателе с полностью открытой дроссельной заслонкой, всеми вывернутыми свечами и полностью заряженным аккумулятором. В идеале — аккумулятор должен быть подключен к пускозарядному устройству, находящемуся в режиме поддержки. Единица измерения — атмосферы, бары, PSI либо любые другие единицы измерения давления. Так как давление именно максимально достижимое, то перед измерением нужно создать все условия для его достижения — прогреть двигатель для минимизации утечек через поршневые кольца и максимально открыть дроссельную заслонку для обеспечения полного наполнения цилиндра. Так как если у вас воздух будет уходить через кольца то давление уже не будет максимальным, на которое способен мотор. Точно также и с открытым дросселем — если заслонкой перекрыть поток воздуха в цилиндр, то поршню нечего будет сжимать и, соответственно, опять не будет максимально достижимым.

Степень сжатия. Исключительно геометрическая величина. Не имеет единицы измерения. Обозначает отношение объема цилиндра с поршнем в нижней мертвой точке к объему цилиндра с поршнем в верхней мертвой точке. Иными словами — это отношение полного объема цилиндра к объему камеры сгорания. Еще проще — степень сжатия показывает во сколько раз сжимается горючая смесь в цилиндре.

Давление в ВМТ такта сжатия — измеряется компрессометром без ниппеля на заведенном моторе, либо при помощи датчика давления и мотортестера. Измеряется в любых единицах измерения давления и напрямую зависит от наполнения цилиндра. То есть от того насколько сильно открыта дроссельная заслонка. Для диагностики представляет интерес анализ этого параметра только на холостом ходе.

С терминологией вроде разобрались. Теперь перейдем к тому, что со всем этим багажом знаний и цифр делать.

Компрессия. Испокон веков для ее измерения применяется простейший прибор — компрессометр.

Для диагноста наибольшее значение имеет не столько абсолютное значение компрессии, которым так любят меряться соседи по гаражам, сколько динамика его нарастания и разница значений между цилиндрами испытываемого мотора.

Почему не очень интересно абсолютное давление?

Одна из причин — это то что несмотря на то, что компрессией принято называть максимально достигаемое давление в цилиндре, при классическом способе измерения на стартерной прокрутке оно таковым не является. Если завести двигатель со вкрученным компрессометром и резко полностью открыть дроссель, то намерянные «максимальные» 10-12 бар при стартерной прокрутке внезапно превратятся в 15-18, а иногда и больше бар. Я видел и разорванные давлением компрессометры, которые забыли выкрутить и завели мотор. Ни о каком воспламенении в цилиндре речь не идет — свечей то выкручены.

Почему так происходит? Вроде все то же самое, мотор крутится, дроссель открыт а показания иногда и в два раза отличаются. Все дело в том что если в цилиндре есть гипотетическое отверстие сечением 1кв.мм, то при заданном перепаде давлений между цилиндром и атмосферой за единицу времени может пройти четко определенное количество воздуха. Это принцип работы жиклера во всем известном карбюраторе. Если мы уменьшаем время существования перепада давлений (увеличиваем обороты двигателя) то времени становится меньше, соответственно и воздуха из цилиндра через эту неплотность уйдет меньше, а результирующее давление увеличится.

Именно по этой причине (ну есть еще несколько, описанных в предыдущих статьях) «подсевшие» двигатели отвратительно работают на холостом ходе и малых оборотах, но на «тапке в пол» после того как раскрутятся, все еще неплохо едут.

Вторая причина — моторное масло, а точнее его количество на стенка цилиндра. При износе колец логично предположить что компрессия упадет. Но это не так до определенного предела.

Дело в том, что изношенные кольца оставляют больше масла на стенке цилиндра, которое, за счет своей вязкости и скоротечности протекающих процессов, выполняет роль прекрасного уплотнителя. Мотор будет пожирать масло, дыметь-коптить, но при том иметь очень неплохую динамику. Опять таки до определенных пределов.

Существует даже методика определения виновника потери компрессии. Обычно подозревают цлиндро-поршневую группу, прокладку ГБЦ либо клапанную группу. Так вот, для того чтобы быстро исключить цилиндропоршневую группу достаточно в подозреваемый цилиндр налить через свечное отверстие несколько миллилитров моторного масла. Помните о том, что масло несжимаемо, то есть ведрами его туда лить не рекомендуется, иначе неизбежен гидроудар.

Так вот, если после добавления масла компрессия увеличивается — это практически стопроцентный приговор цилиндропоршневой группе.

С быстрой диагностикой клапанной группы без некоторого специализированного оборудования могут возникнуть проблемы.

Таким образом мы видим, что компрессия — сильно неоднозначный параметр. Как и любой параметр — его важно не только правильно измерить, но еще и правильно интерпретировать.

Давление ВМТ такта сжатия.

Анализ этого параметра и его динамики в последнее время набирает заслуженную популярность в связи с появлением у диагностов мотортестеров со специализированными датчиками.

Что может дать такой анализ? Очень много для диагноста, а для клиента — подробный осмотр мотора за очень небольшое время, и, что важно, наглядно. По времени это занимает — выкрутить свечу, закрутить датчик, 30 секунд замер ну и обратные операции. Примем условно — 5 минут с запасом, а вы теперь оцените сколько информации можно получить о моторе за это время: оценка наличия подсосов во впускном тракте, реальный угол опережения зажигания, пневматические потери в цилиндре (те самые утечки), корректность установки распредвалов, противодавление выхлопных газов (пора катализатор вырезать или еще нет). И это все за пять минут. Вот до чего техника дошла. И, как и в любой другой сфере — техники мало, нужно уметь интерпретировать полученные графики, что требует знаний конструкции двигателя и сути и взаимосвязей протекающих в нем процессов.

Именно для того чтобы вы понимали что происходит в вашем моторе я и пишу эти статьи, начиная от элементарных базовых понятий, до более глубоких исследований реальных моторов в будущем.

Ссылка на основную публикацию
Adblock
detector